Polycomb group proteins and heritable silencing of Drosophila Hox genes.
نویسندگان
چکیده
Early in Drosophila embryogenesis, transcriptional repressors encoded by Gap genes prevent the expression of particular combinations of Hox genes in each segment. During subsequent development, those Hox genes that were initially repressed in each segment remain off in all the descendent cells, even though the Gap repressors are no longer present. This phenomenon of heritable silencing depends on proteins of the Polycomb Group (PcG) and on cis-acting Polycomb response elements (PREs) in the Hox gene loci. We have removed individual PcG proteins from proliferating cells and then resupplied these proteins after a few or several cell generations. We show that most PcG proteins are required throughout development: when these proteins are removed, Hox genes become derepressed. However, we find that resupply of at least some PcG proteins can cause re-repression of Hox genes, provided that it occurs within a few cell generations of the loss of repression. These results suggest a functional distinction between transcriptional repression and heritable silencing: in at least some contexts, Hox genes can retain the capacity to be heritably silenced, despite being transcribed and replicated. We propose that silenced Hox genes bear a heritable, molecular mark that targets them for transcriptional repression. Some PcG proteins may be required to define and propagate this mark; others may function to repress the transcription of Hox genes that bear the mark.
منابع مشابه
General transcriptional silencing by a Polycomb response element in Drosophila.
Polycomb response elements (PREs) are cis-regulatory sequences required for Polycomb repression of Hox genes in Drosophila. PREs function as potent silencers in the context of Hox reporter genes and they have been shown to partially repress a linked miniwhite reporter gene. The silencing capacity of PREs has not been systematically tested and, therefore, it has remained unclear whether only spe...
متن کاملPolycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila
In Drosophila melanogaster, Hox genes are organized in an anterior and a posterior cluster, called Antennapedia complex and bithorax complex, located on the same chromosome arm and separated by 10 Mb of DNA. Both clusters are repressed by Polycomb group (PcG) proteins. Here, we show that genes of the two Hox complexes can interact within nuclear PcG bodies in tissues where they are corepressed....
متن کاملShort germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes
In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way...
متن کاملAre Polycomb Group Bodies Gene Silencing Factories?
Polycomb group (PcG) proteins mediate long-range associations between Hox genes, which correlate with gene repression in vivo. Bantignies et al. (2011) identify a physiological role for the nuclear localization of Hox genes in PcG-mediated gene silencing, strengthening the evidence that nuclear positioning regulates gene expression.
متن کاملA unified mode of epigenetic gene silencing: RNA meets polycomb group proteins.
Recently, an essential role for RNA in the epigenetic silencing of genes packaged within heterochromatin in animals has been recognized. The RNA appears to be involved in targeting chromatin remodeling activity to a specific locus and in later maintaining the repressed state of the gene. Epigenetic silencing of Hox cluster genes by the Polycomb group proteins also involves the formation of a st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 128 6 شماره
صفحات -
تاریخ انتشار 2001